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Abstract Many security breaches occur because of

exploitation of vulnerabilities within the system. Vulnera-

bilities are weaknesses in the requirements, design, and

implementation, which attackers exploit to compromise the

system. This paper proposes a methodological framework

for security requirements elicitation and analysis centered

on vulnerabilities. The framework offers modeling and

analysis facilities to assist system designers in analyzing

vulnerabilities and their effects on the system; identifying

potential attackers and analyzing their behavior for com-

promising the system; and identifying and analyzing the

countermeasures to protect the system. The framework

proposes a qualitative goal model evaluation analysis for

assessing the risks of vulnerabilities exploitation and ana-

lyzing the impact of countermeasures on such risks.
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1 Introduction

Developing secure software systems is challenging, because

errors and misspecifications in requirements, design, and

implementation can bring vulnerabilities to the system.

Attackers most often exploit vulnerabilities to compromise

the system. In security engineering, a vulnerability is an

error or weakness of the IT system or its environment that in

conjunction with an internal or external threat can lead to a

security failure [1]. For example, vulnerabilities may result

from input validation errors, memory safety violations,

weak passwords, viruses, or other malware.

In recent years, software companies and government

agencies have become particularly aware of security risks

that vulnerabilities impose on the system security and have

started analyzing and reporting detected vulnerabilities of

products and services. For instance, the IBM Internet

Security Systems X-Force [2] has detected and analyzed

6,437 new vulnerabilities in 2007, of which 1.9% are

critical and 37% are high risk. Twenty percentage of the

five-top critical vulnerabilities were found to be unpatched.

Of all the vulnerabilities disclosed in 2007, only 50% can

be corrected through vendor patches, and 90% of vulner-

abilities could be remotely exploited. These statistics show

the critical urgency of the vulnerabilities affecting software

services and products. Various web portals and online

databases of vulnerabilities are also made available to

security administrators. For example, the National Vul-

nerability Database [3] SANS top-20 annual security risks

[4], and Common Weakness Enumeration (CWE) [5]

provide updated lists of vulnerabilities and weaknesses.

The Common Vulnerability Scoring System (CVSS) [6]

also provides a method for evaluating the criticality of

vulnerabilities.

Existing software engineering frameworks focus on

various aspects for eliciting security requirements such as

design of secure components [7], security issues in social

dependencies among actors [8] and their trust relationships

[9], attacker behavior [10, 11] and attacker goals [12], and

events that can cause system failure [13]. However, they

rarely use vulnerabilities to elicit security requirements.
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Liu et al. [8] propose a vulnerability analysis approach for

eliciting security requirements. However, vulnerabilities in

this framework are different from the ones defined in

security engineering (i.e., weaknesses in the IT system).

Liu et al. refer to vulnerabilities as the weak dependencies

that may jeopardize the goals of depender actors. Only few

security software engineering approaches consider ana-

lyzing vulnerabilities, as weaknesses in the systems, during

the elicitation of security requirements. For instance, in

[14], vulnerabilities are modeled as beliefs inside the

boundary of attackers that may positively contribute to

attacks. However, the resulting models do not specify

which actions or assets introduce vulnerabilities into the

system and which actors are vulnerable. In addition, the

impact of countermeasures on vulnerabilities and attacks is

not captured. The CORAS framework [15, 16] provides a

way for expressing how a vulnerability leads to another

vulnerability and how a vulnerability (or combination of

vulnerabilities) lead to a threat. However, similar to [14],

CORAS does not investigate which design choice,

requirement, or process has brought the vulnerabilities to

the system.

Current state of the art raises the need for a systematic

way to link the empirical security knowledge such as

information about vulnerabilities, attacks, and proper

countermeasure to stakeholders’ goals and security

requirements. By identifying vulnerabilities or classes of

vulnerabilities and associating them with the activities and

assets that bring them to the system, analysts can under-

stand how weaknesses are brought to the system and how

flaws in one part of the system are spread out to other parts.

Information about potential attacks that exploit vulnera-

bilities can be linked to requirements to analyze the effects

of the exploited vulnerabilities on activities or goals of

stakeholders. Analyzing the effects of vulnerabilities on the

system makes it possible to assess the risks of attacks,

analyze the efficacy of countermeasures, and decide on

patching or disregarding the vulnerabilities. In our previous

work [17], we have introduced vulnerabilities into a

security conceptual modeling method to address these

issues. Vulnerabilities are treated as weaknesses in the

structure of goals and activities of intentional agents.

However, vulnerabilities were only graphically attached to

the i* modeling elements, while the semantics of vulner-

abilities relationships with other elements of the i* models

were not well defined. In addition, vulnerability analysis

was not complemented with a threat analysis.

This paper extends and refines our previous work by

proposing an agent- and goal-oriented framework for

eliciting and analyzing security requirements by linking

empirical knowledge of vulnerabilities to requirements

models. In particular, we have revised the modeling

framework proposed in [17] on the basis of a conceptual

framework centered on vulnerabilities. This conceptual

framework helps us identify the basic constructs and rela-

tionships necessary to model and analyze vulnerabilities

and their effects on the system, and define their semantics.

The proposed vulnerability-centric security requirements

framework is the result of surveying current critical vul-

nerabilities in security engineering discipline to understand

how vulnerabilities are brought to the system, exploited by

the attacks, and handled by the countermeasures.

Together with a modeling framework, this paper pro-

poses a goal model evaluation method that helps analysts

verify whether top goals of stakeholders are satisfied with

the risk of vulnerabilities and attacks and assess the effi-

cacy of security countermeasures against such risks. The

evaluation does not only specify if the goals are satisfied,

but also makes it possible to understand why and how the

goals are satisfied (or denied) by tracing back the evalua-

tion to vulnerabilities, attacks, and countermeasures. In

addition, the resulting security goal models and goal model

evaluation can provide a basis for trade-off analysis among

security and other quality requirements [17]. New vulner-

abilities are continuously being uncovered. By linking

requirements, vulnerabilities, and countermeasures to each

other in a modeling framework, one can update the models

with newly detected vulnerabilities in order to analyze the

risks imposed by the new vulnerabilities.

The structure of the paper is organized as follows.

Section 2 introduces the security concepts used in the paper

with a particular focus on vulnerabilities and related

notions. Section 3 introduces the meta-model of the

framework, in which security concepts are incorporated

into an agent- and goal-oriented modeling framework.

Section 4 describes the modeling process, and Sect. 5

proposes a method for analyzing security requirements

based on the goal model evaluation techniques. The mod-

eling and analysis methods described are illustrated by case

examples. Section 6 overviews the current state of the art in

threat analysis and security requirements engineering.

Finally, Sect. 7 draws a conclusion and discusses future

work.

2 Relevant concepts

This section investigates the conceptual foundation for the

security requirements engineering framework proposed in

this paper. We identify and discuss the basic security

conceptual modeling constructs that we have adopted in the

meta-model of our framework (Sect. 3). This discussion is

grounded in the security engineering literature.

An asset is ‘‘anything that has value to the organiza-

tion’’ [18]. Assets can be people, information, software,

and hardware [16]. They can be the target of attackers and,
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consequently, need to be protected. Assets such as software

products, services, and data may have vulnerabilities. A

vulnerability is a weakness or a backdoor in the IT system

which allows an attacker to compromise its correct

behavior [1, 19, 20]. Identifying which are the vulnera-

bilities of the system and which assets have brought them

into the system help analysts to analyze how vulnerabilities

spread within the system and, consequently, to determinate

the vulnerable components of the system.

The potential way an attacker can violate the security of

(a component of) the IT system is called threat (or attack)

[21]. Essentially, an attack is a set of intentional unwar-

ranted actions which attempts to compromise confidenti-

ality, integrity, availability, or any other desired feature of

an IT system. Though the general idea of attack is clear,

there is no consensus on a precise definition. For instance,

Schneider [20] points out that an attack can occur only in

presence of a vulnerability. Conversely, Schneier [21]

broadens this vision, considering also attacks that can be

performed without exploiting vulnerabilities. Several

frameworks for security analysis take advantage of tem-

porally ordered models for analyzing attacks [22, 23].

Incorporating the concept of time into the attack modeling

helps to understand the steps of actions and vulnerability

exploitations which lead to a successful attack. However,

temporally ordered models add complexity to the require-

ments engineering models which may not be suitable for

the early stages of development.

Analyzing attacks and vulnerabilities allows analysts to

understand how system security can be compromised.

Another aspect to be considered is attackers’ motivations

(malicious goals). Examples of malicious goals are disrupt

or halt services, access confidential information, and

improperly modify the system [24]. Schneier [10] argues

that understanding who the attackers are along with their

motivations, goals, and targets, aids designers in adopting

proper countermeasures to deal with the real threats.

Analyzing the source of attacks helps to better predict the

actions taken by the attacker.

Threat analysis attempts to identify the types of threats

that an organization might be exposed to and the harm they

could cause to the organization (i.e., the severity of threats).

Threat analysis starts with the identification of possible

attackers, evaluates their goals, and how they might

achieve them. Through threat assessment, analysts can

assess the risk and cost of attacks, and understand their

impact on system security.

Such knowledge helps analysts in the identification of

appropriate countermeasures to protect the system. A

countermeasure is a protection mechanism employed to

secure the system [21]. Countermeasures can be actions,

processes, devices, solutions, or systems intended to pre-

vent a threat from compromising the system. For instance,

they are used to patch vulnerabilities or prevent their

exploitation.

Besides the concepts described earlier, there are other

concepts relevant to security requirements. For instance,

Massacci et al. [25] integrate concepts from trust manage-

ment, such as permission, trust, and delegation, into a

requirements engineering framework to address authoriza-

tion issues in the early phases of software development

process. Risk analysis frameworks (e.g., [13]) employ the

concepts of event to model uncertain circumstances that

affect the correct behavior of the system. However, events

do not allow the analysis of (malicious) intentional behavior

and, therefore, they result more appropriate to assess risks

and elicit safety requirements in critical systems.

Security is not only limited to the identification of

protection mechanisms to address vulnerabilities. Security

originates from human concerns and intents [8]; the social

issues of organizations where different actors can collab-

orate or compete to achieve their goals should be consid-

ered as part of security requirements analysis [8, 9]. In

addition, security is a subjective and personal feeling [26];

therefore, security requirements analysis and security-

related decision makings require analyzing personal and

organizational goals of the stakeholders participating to the

system. For this purpose, we take advantage of agent- and

goal-oriented concepts such as intentional actor, goal, and

social dependency. There is evidence in the security

requirements engineering literature (e.g., [8, 9, 12, 27]) that

these concepts provide the means for analysis of organi-

zational and social contexts in which the system-to-be

operates. In the next section, we show how security con-

cepts can be integrated in the meta-model underlying the i*

agent- and goal-oriented framework.

3 An extended i* meta-model

Security is both a technical and a social/organizational

problem. The ability of the i* framework [28] to model

agents, goals, and their dependencies makes it suitable for

understanding security issues that arise among multiple

malicious or non-malicious agents with competing goals.

In addition to modeling actors, i* offers a way to model

actors’ dependencies, goals, assets, and actions, refine-

ments of goals into the actions and assets, and decompo-

sition of actions. Thus, the i* framework provides the basic

setting for representing vulnerabilities that are brought by

actions and assets and propagating them through the

decomposition and dependency links to other elements of

model. Moreover, i* enables modeling contribution of

goals, actions, and assets on other goals. Such relations can

be used to capture the effects of vulnerabilities on the

satisfaction of system and stakeholders’ goals.
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In this section, we present the meta-model for the

security requirements engineering framework, which

extends the i* meta-model with security concepts (Fig. 1).

The meta-model includes both the i* strategic dependency

(SD) diagram, which captures the actors and their depen-

dencies and the i* strategic rationale (SR) diagram, which

expresses the internal goals and the behavior of actors to

achieve their goals. The meta-model also captures the

concepts of vulnerability, attack, security countermeasure,

and their corresponding relationships with i* constructs.

3.1 The i* meta-model

This section provides an overview of the i* framework’s

meta-model along the modeling constructs it provides

(Fig. 1). An actor is an active entity that has strategic goals

and intentionality within the system or the organizational

setting, carries out activities, and produces entities to achieve

goals by exercising its knowhow [28]. Actors can be roles or

agents. A role captures an abstract characterization of the

behavior of a social actor within some specialized context or

domain of endeavor. An agent is an actor with concrete and

physical manifestations and can play some role.

Intentional elements defined by the i* framework are

goals, softgoals, tasks, and resources. A goal represents the

intentional desire of an actor, without specification of how

the goal is satisfied. Goals are also called hard goals in

contrast to softgoals which do not have clear criteria for

deciding whether they are satisfied or not. A task is a set of

actions which the actor needs to perform to achieve a goal.

A resource is a physical or an informational entity and is

used to represent assets.

The relations between actors are captured by the notion

of dependency. Actors can depend on each other to achieve

a goal, perform a task, or furnish a resource. For example,

in a goal dependency, an actor (the depender) depends on

another actor (the dependee) to satisfy the goal (the dep-

endum). In addition to the dependum, two other intentional

elements are involved in a dependency. One element rep-

resents why a depender needs the dependum, and the other

element specifies how the dependee satisfies the dependum.

The meta-model in Fig. 1 also describes the relation-

ships between intentional elements inside the boundary of

actors. Actors have (soft)goals and rely on other (soft)-

goals, tasks, and resources to achieve them. Softgoals can

be decomposed into more softgoals using AND/OR

decomposition relations. Means-end links are relations

between goals and tasks, and indicate that a goal (the end)

can be achieved by performing alternative tasks (the

means). Tasks can be decomposed into any other inten-

tional elements through task decomposition links. By

decomposing a task into subelements, one can express that

the subelements need to be satisfied or available to have the

root task performed.

Fig. 1 The i* meta-model extended with the concept of vulnerability and attack
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Softgoals and other intentional elements can contribute

either positively or negatively to the other softgoals. This is

expressed by the contribution links. The contribution

relation is characterized by an attribute type which can be

Help (?), Make (??), Hurt (-), Break (--), and

Unknown (?) values. By linking an intentional element to a

softgoal by a Make (Break) contribution, one can express

that satisfaction of the intentional element is enough to

fully satisfy (fully deny) the softgoal, while Help (Hurt)

contributions indicate that the intentional element has

positive (negative) impact, but the impact is not enough to

fully satisfy (deny) the softgoal. This qualitative approach

for modeling contribution to softgoals reflects the fact that

softgoals do not have clear-cut satisfaction criteria.

3.2 Attack and security countermeasure extensions

to the i* meta-model

The concepts of vulnerability, attacks, effects of vulnera-

bilities, and impact countermeasures are added to the i*

meta-model. In Fig. 1, extended elements to the i* meta-

model are highlighted. Adopting a task or employing a

resource can bring vulnerabilities to the system. The con-

cept of vulnerability is not limited to specific reported

vulnerabilities or to general classes of vulnerabilities. For

example, one can model the famous worm called 2000

ILOVEYOU1 or general class of argument injection or

modification. For the sake of simplicity, we call an inten-

tional element that introduce a vulnerability a vulnerable

element. Vulnerabilities are concrete weaknesses or flaws

that exist in a component of the system like a process,

asset, algorithm, and platform, whereas goals and softgoals

represent actors’ intentions and software quality attributes,

respectively. In the i* conceptual framework, adopting a

task or employing a resource describes a concrete way of

achieving a (soft)goal; therefore, (soft)goals which are

abstract and independent of operationalization do not

introduce a flaw or vulnerability.

Exploitation of vulnerabilities can have an effect on the

same element that has brought the vulnerabilities or on

other tasks, goals, and resources. The effect is character-

ized by an attribute, type, which specifies how the vul-

nerability affects a goal, a task, or a resource. The effect

types are Hurt (-), Break (--), and Unknown (?). The

effect of vulnerabilities on softgoals is not considered in

the meta-model, since softgoals are not directly measurable

goals. The effect of vulnerabilities would be propagated to

softgoals from the affected elements that contribute to the

softgoals.

An attack represents the set of actions that an attacker

performs to exploit a number of vulnerabilities and has

negative effects on other intentional elements. In Fig. 1, we

use an aggregation relation to indicate the tasks, actors,

vulnerabilities, and their effects are assembled and con-

figured together to mount an attack. This definition of

attacks is based on the definition proposed by Schneider

[20] in which vulnerabilities are a key aspect of any attack.

This choice is due to the fact that we are mainly interested

in analyzing the effects of vulnerabilities on the system.

Attacks that are performed without exploiting vulnerabili-

ties can be modeled by introducing a new class of attacks in

which their target is a task or a resource instead of a set of

vulnerabilities.

Resources and tasks can have a security impact on

attacks. Such tasks and resources can be interpreted as

security countermeasures; however, we do not distinguish

them from non-security mechanisms in the meta-model as

this distinction does not affect the requirements analysis.

The impact relation has the attribute, type, which accepts

Hurt (-), Break (--), and Unknown (?) values. Security

countermeasures can be used to patch vulnerabilities,

alleviate the effect of vulnerabilities, or prevent the mali-

cious tasks that exploit vulnerabilities or system

functionalities.

By patching the vulnerability, the countermeasure fixes

the weakness in the system. Example of such counter-

measure is new updates the software vendors provide for

the released products. A countermeasure that alleviates the

vulnerability effects does not address the source of the

problem, but it intends to reduce the effects of the vul-

nerability exploitation. For example, a backup system

mitigates the effect of security failures that cause data loss.

Countermeasures can prevent the actions that the attacker

performs, which consequently prevents exploitation of the

vulnerability by the actions. For example, an authentication

solution prevents unauthorized access to assets. Counter-

measure may prevent performing vulnerable tasks or pre-

vent using vulnerable resources, which results in removing

the vulnerability that has been brought to the system by the

vulnerable elements. For example, one can disable Java-

Script option in the browser to prevent exploitation of

malware run by the browser.

The definition of attack and security countermeasure is

fundamentally a matter of perspective: a task or a goal

counted as malicious can be perceived non-malicious from

a different viewpoint. Sequences of actions for mounting

an attack are basically similar to sequences of actions

performed by legitimate actor. Therefore, the line to dif-

ferentiate malicious actions from non-malicious ones is

arbitrary, and distinguishing malicious goals from non-

malicious goals depends on the perspective adopted by the

system designer.

Malicious elements have the same semantics of ordinary

intentional elements: they can be similar or identical to1 http://www.cert.org/advisories/CA-2000-04.html.
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non-malicious elements. For example, the desire to have a

high profit is not a malicious goal, but an actor can achieve

such a goal either by working legally and honestly or

cheating. On the other hand, a task can be interpreted as

malicious in a condition, while it is counted as non-mali-

cious in a different context. For example, one can install a

camera for spying into other people privacy, whereas a

surveillance camera can be used for security purposes. In

this example, the goal for performing tasks indicates

whether the task is malicious or not.

Since malice is a matter of perspective, distinguishing

malicious and non-malicious behavior does not affect

security requirements analysis. Therefore, the meta-model

presented in Fig. 1 is a neutral meta-model that does not

distinguish malicious and non-malicious elements. How-

ever, as showed by Sindre and Opdahl [29], graphical

models become much clearer if the distinction between

malicious and non-malicious elements is made explicit and

the malicious actions are visually distinguished from the

legitimate ones. Sindre and Opdahl show that the use of

inverted elements strongly draws the attention to depend-

ability aspects early on for those who discuss the models.

In this regard, an extended meta-model is developed with

the assumption that some actors are attackers and have

malicious goals, and other actors employ countermeasures

for protecting their goals. Figure 2 presents the extended

meta-model, which is derived from the meta-model in

Fig. 1 by introducing a new type of actor called attacker.

An attacker is a specialization of the i* actor elements;

thus, the same modeling rules and properties of the i*

actors can be applied for modeling attackers. In particular,

as for actors, attackers can be roles and agents. Attackers

have malicious intentional elements such as malicious

goals and malicious softgoals inside its boundary. The

concept of boundary is added to link the malicious ele-

ments to the attacker. An attack involves an attacker,

malicious tasks that he performs to exploit a set of vul-

nerabilities, and the effect of exploited vulnerabilities on

other actors’ intentional elements.

4 The modeling process

This section presents the security requirements modeling

process along with the modeling notation and graphical

representation. The resulting models help analysts to

Fig. 2 A fragment of the meta-model in which attacks, attackers, malicious behavior, and security countermeasure are explicit elements of the

meta-model

46 Requirements Eng (2010) 15:41–62

123



www.manaraa.com

understand the social and organizational dependencies

among main stakeholders of the system, their goals, the

system architecture, the organization structure [28], and

security issues that arise among interaction of actors [17] in

the early stages of the development.

Figure 3 summarizes the modeling process. The process

consists of five steps; each of them results in a view of the

security requirements model. Each of these views provides

additional incremental information:

1. Requirements view captures stakeholders and system

actors together with their (soft)goals, the tasks to

achieve those goals, required resources, and the

dependencies among them.

2. Vulnerabilities view extends the requirements view by

adding the vulnerabilities that tasks and resources

brings to the system and the impact that their

exploitation (or of their combinations) has on the

system.

3. Attackers template view captures the behavior of

attackers by representing how attackers can exploit

vulnerabilities to compromise the system.

4. Attackers profile view captures individual goals, skills,

and behavior of a specific class of attackers based on

the attacker template view.

5. Countermeasures view captures the security solutions

adopted by actors to protect the system and their

impacts on attacks and vulnerabilities.

The process for developing security requirements mod-

els is incremental: in each step, new elements are added to

the requirements model to show new aspects. The model-

ing process starts with the identification of actors, their

dependencies, goals, and the tasks and resources necessary

to achieve them. Then, vulnerabilities are identified and

propagated through the goal model. In the third step, pos-

sible attacks that can exploit the vulnerabilities are iden-

tified and analyzed. Attacker profiles that specify the

capabilities and skills of categories of attackers are defined.

The model is then evaluated to assess the risks of exploi-

tation of vulnerabilities by attackers. If the analysis shows

that the risks cannot be tolerated by stakeholders, the

requirements model is revised by introducing counter-

measures and their impacts on vulnerabilities and attacks.

Modeling goal, vulnerabilities, attacks, and countermea-

sures is an iterative process as the adoption of counter-

measures may cause the introduction of new vulnerabilities

as well as denial of functionalities or quality goals.

Identification of vulnerabilities, attacks, and counter-

measures requires security knowledge and experience. A

main assumption of this work is that analysts have the

security experience and knowledge necessary to identify

vulnerabilities or extract them from vulnerabilities

knowledge bases. The proposed framework does not pro-

vide guidelines or methods for finding vulnerabilities and

attacks and identifying proper countermeasures. It proposes

a way for linking security knowledge such as reports of

attacks, list of vulnerabilities, and alternative countermea-

sures, to requirements and provide support for security

requirements analysis. Analysts can take advantage of

available vulnerability knowledge sources such as the

CWE categorization of weaknesses and vulnerabilities [5],

SANS list of top-20 vulnerabilities [4], and CVE entries

[6]. CVE contains vendor-, platform-, and product-specific

vulnerabilities. Such technology- and system-oriented

vulnerabilities are not useful to decide on security

requirements in the early stages of development where

target platform and technology is not yet decided. SANS

list and CWE catalog include more abstract weaknesses,

errors, and vulnerabilities. Some entries in these lists are

technology and platform independent, while others are

specific to specific products, platforms, and programming

languages.

4.1 Eliciting and modeling initial requirements

Requirements modeling intends to identify and model

stakeholders’ needs and system requirements. We take

advantage of the i* framework that provides a way for

modeling and analyzing stakeholders’ and system’s goals

and system-and-environment alternatives that address

achievements of the goals [28, 30]. We do not present theFig. 3 The modeling process
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modeling process underlying the i* framework, and details

in this regard can be found in [30].

Figure 4 shows the requirements view of a browser

which requests the content from a web server to build

HTML pages. The User depends on a software agent, the

Firefox Browser, to Browse Web sites. The browser

depends on the User to Enter inputs and depends on Web

server for Web page dynamic content and JavaScript. To

get the dynamic content, the browser needs to get content

which is entered by other users (User’s inputs). This view

also describes high-level goals and tasks of the browser.

For instance, one of the Firefox browser’s tasks is to Show

the web pages and to perform that the browser needs to Run

the JavaScript with user inputs. This makes the final cus-

tomized HTML page, and for this aim, the browser Request

and get pages from the server and Get users’ input.

4.2 Modeling and analyzing vulnerabilities

Vulnerabilities modeling intends to understand the weak-

nesses affecting system requirements. To incorporate

specific vulnerabilities or classes of vulnerabilities into the

requirements model, we incrementally refine the require-

ments view by identifying the vulnerable tasks and

resources and analyze the effect of vulnerability exploi-

tation. To represent vulnerabilities, the i* modeling nota-

tion is enriched with a black circle for the new graphical

element. The black circle is chosen to resemble a hole or

weakness in the system which leaves a backdoor for

attacks. Vulnerabilities are graphically attached to tasks

and resources, which implies the execution of the task or

availability of the resource brings the vulnerability to

system. To represent the possible effect(s) of an exploited

vulnerability on goals, tasks, and resources, a new link is

added to the i* relations. The vulnerability effect is

visually represented by a dotted line with a label, l, where

l [ { - , - - , ?}.

Figure 4 shows the vulnerability view for a browser

which requests the content from a web server. The model

does not cover all possible vulnerabilities, and only shows

some examples of vulnerabilities affecting web servers and

browsers. One of the browser’s tasks is to Show the web

pages, and to perform that, the browser needs to Run the

JavaScript with user inputs. The browser Request and get

pages from the server and Get users’ input. Each of these

tasks bring a vulnerability to the system. By downloading a

JavaScript code from the web server, a Malicious Script

can be downloaded as well. The user inputs can also con-

tain Malicious input. As a result, when the browser runs the

JavaScript with the user inputs, the browser is exposed to

the combination of the Malicious script and Malicious user

input vulnerabilities.

When an actor depends on another actor for a vulnerable

task or resource, the vulnerability is carried to the depender

Fig. 4 Initial requirements and actors’ actions, extended with the vulnerabilities view
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actor by the vulnerable dependum. Figure 5a explains the

propagation of the vulnerability in the reverse direction of

dependencies. This figure shows that for dependency rela-

tions, the vulnerability V in the dependee’s resource R(how)

is propagated to the dependum, RD, and the depender’s

element, R(why). For example, in Fig. 4, the Web server

depends on the users for User’s inputs and store the users’

provided content. Example of such web servers are Wiki

pages and discussion rooms that store users’ provided

content. Later, other users depend on the Web server for

Web page dynamic content and JavaScript. However, the

User’s input vulnerability gets propagated to other users as

the Malicious Script vulnerability. The Malicious Script is

brought to the Firefox agent because of the dependency link

between the browser and Web server. Similar arguments

also applies to task dependencies.

Vulnerabilities are also propagated through decomposi-

tion links. Using decomposition links, analysts refine tasks

into more detailed elements with higher resolution infor-

mation, and the subelements describe the up level task in

detail. The application of a framework to a number of case

studies has shown that it is easier to identify vulnerabilities

for concrete subelements rather than for high-level abstract

ones. Therefore, vulnerabilities are propagated bottom-up

from subelements to the high level decomposed task.

Figure 5b depicts the vulnerability propagation rule

through decomposition links. This figure depicts that if a

task Troot is decomposed into a task Tchild and a resource

Rchild, respectfully with vulnerabilities V1 and V2, the root

task would receive both vulnerabilities V1 and V2. Vul-

nerability effects depend on the context of the vulnerable

elements. As shown in Fig. 5(b), the analyst can either

assign the vulnerability effect to the child (Effect2 for V2)

or to the root (Effect1 for V1) element based on the context.

In addition, based on the context, one may determine that

the propagated vulnerabilities have a combined effect.

Propagating vulnerabilities effects cannot be automatically

deducted from the structure of the model and requires

human judgment and security experiences.

A concrete example of vulnerability propagation

through decomposition links is shown in Fig. 4 where the

Run the JavaScript with user inputs task in decomposed

into Request and get content and scripts from the server

with Malicious script vulnerability and Get users’ input

with Malicious user input vulnerability. Accordingly, the

root task receives both vulnerabilities. These vulnerabilities

or their combination can have various effects on goals and

tasks of the actors when running the JavaScript. Figure 6

shows how the vulnerabilities are combined. The effect of

exploiting the combination of Malicious script in the

malicious user input vulnerabilities is expressed using the

vulnerability effect link with a – – (break) contribution

from the combination of the vulnerabilities to Protect

users’ cookies and Build the correct HTML page. In the

next sections, we describe how the requirements and vul-

nerabilities views are related to the attacker template and

countermeasure views.

4.3 Modeling attacker templates

The aims of attacker template modeling is to define a view

of the security requirements model that represents the

possible ways in which attackers can exploit vulnerabilities

to compromise the system and the goals behind these

attacks. To build the attacker template, designers can take

advantages of existing approaches (e.g., attack tree [10]

and anti-goals [12]) to develop a tree-like malicious goal

model. In addition, catalogs of malicious goals [24] might

be useful for driving attacker goals.

As discussed earlier, the proposed modeling notation

graphically distinguishes malicious and non-malicious

elements using a black shadow in the background of

malicious elements as proposed in [8, 17]. The exploitation

of a vulnerability by a malicious actor is graphically rep-

resented by a link labeled exploit from the malicious task to

the vulnerability. A vulnerability may have different

effects on other goals and mechanisms. Different attacks

that exploit a vulnerability may have different effects on

other elements. Therefore, to graphically link an attack and

the effect of the vulnerability that the attack exploits, the

corresponding vulnerability effect links for each attack are

labeled with the same tag number that the exploit link is

tagged. In this way, an attack is a quadruple consisting of

an attacker, the malicious task that the attacker performs,

a set of vulnerabilities, and their effect on the system

(see Fig. 2).

Figure 6 extends a fragment of the requirements view

in Fig. 4 by introducing two possible attackers: Random

hacker and Fake Web Site. Fake Web Site is a Web

Fig. 5 Vulnerability propagation rules
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server who intends to Steal user’s passwords from

cookies. The Fake Web Site is modeled in Fig. 4 as an

(inverted) i* role since we refer to a generic web site

rather than to a specific web site. The Fake Web Site

uses Phishing attack by exploiting the Malicious script.

The Random hacker role is a (malicious) specialization

of User role and inherits the user’s capabilities. For

instance, the Random hacker can browse a website and

enter inputs. The hacker can use these capabilities for his

malicious intents such as Obtaining other users cookies.

One possible way to obtain cookies of other users is

Cross-site scripting which consists of Injecting a mali-

cious URL into the JavaScript and Extracting the cookies

from malicious URL logs. To Inject a malicious URL

into the JavaScript, the hacker Injects malicious URL as

user input by playing the role of an ordinary user. As

discussed earlier, to specify which malicious task

exploits the vulnerability and causes this effect both the

exploit and vulnerability effect links are labeled with a

tag (number one).

4.4 Identifying and modeling countermeasures

By developing requirements, vulnerabilities, and attacker

template views, analysts have the machinery necessary to

evaluate the risks threatening the system. On the basis of

risk assessment, analysts elicit and analyze the security

countermeasures needed to protect the system. To model

countermeasures, a modeling element is not added to the i*

framework, since countermeasures share the same nature

with other tasks and resources. Different countermeasures

can have a different impact on attacks. A countermeasure

Fig. 6 Attacker template view for the browser and web server example
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can alleviate the effect of a vulnerability, patch it, or

prevent malicious tasks or system’s functionalities that

bring the vulnerabilities. These impacts are modeled

through alleviate, patch, and prevent links, respectively.

The model in Fig. 7 presents the countermeasures for

the vulnerabilities and attacks views in Fig. 6. The coun-

termeasure elements are highlighted using a different

color.2 In Fig. 7, the web server employs two security

mechanisms: validate user input and Remove HTML tags

from use input. By removing the HTML tags, the malicious

code is removed from the user input. This impact is

modeled through prevent relations between the counter-

measures and the malicious task Inject malicious URL as

user input with ‘‘-’’ label. By validating user input, the

Malicious user input vulnerability is partially patched. At

the browser side, one can Disable JavaScript and use Anti

Phishing tool bar. Disabling JavaScript prevents perform-

ing Run the JavaScript with user inputs, hence, the vul-

nerable task is not performed any more. As a result, the

vulnerabilities that are brought by running JavaScript do

not exist any more.

4.5 Attacker profile definition

Different typologies of attackers may have different capa-

bilities and skills. The idea underlying the attacker profile

is to analyze classes of attackers and their behavior against

the system. To define capabilities and skills of a class of

attackers, the tasks that the attacker can perform, resources

that can obtain, and goals that can satisfy are identified and

labeled. Intuitively, labels represent the evidences that a

goal has been satisfied, a task has been performed, or a

resource is available. We refer to Sect. 5 for details about

evaluation labels. Table 1 gives two different attacker

profiles for Random Hacker and two profiles for Fake Web

Site introduced in Fig. 4. The table indicates which attacker

can achieve the tasks by assigning evaluation labels to

malicious tasks defined in the attacker template.

5 Security requirements analysis using goal model

evaluation

In addition to the benefits that analysts gain through the

modeling process, goal models including vulnerabilities,

attacks, and countermeasures provide a basis for security

requirements analysis. The purpose of the evaluation is to

assess the risks and determine the countermeasure neces-

sary to protect the system. While traditional risk analysis

methods assess risks by considering quantitative probabil-

ity and severity of successful attacks [21], we propose

analyzing risks by evaluating satisfaction or denial of goals

of the system and stakeholders. For this purpose, we take

advantage of qualitative goal model evaluation techniques.

Although a quantitative risk assessment approaches can

greatly simplify decision making and provide accurate final

results, it can be difficult to apply due to lack of agreed

metrics of vulnerabilities and accurate measures, specially

in the early stages of development. On the other hand,

qualitative evaluation answers questions with lower reso-

lution information, represented in a qualitative spectrum.

Goal model evaluation is the procedure to verify if the

actors’ top level goals are satisfied by the choices that they

have made and consists of propagating denial or satisfac-

tion evidences (labels) through the goal model using a set

of rules [31]. Horkoff [32] proposes an i* goal model

evaluation method where denial or satisfaction labels are

assigned to the leaf nodes and then are propagated through

the goal model based on the type of the links between the

elements. Evidences for satisfaction or denial are in the

scale of values, which ranges from full satisfy (S), partial

satisfy (PS), unknown (?), and conflict (C) to partial deny

(PD) and full deny (D) which intended order of

S [ PS [ C [ ? [ PD [ D. In case of conflicts, human

judgment is required to resolve the conflicts of contribu-

tions during the evaluation process.

In this work, we have adopted and adapted the goal

evaluation method in [32] to support a security require-

ments analysis centered on vulnerabilities. The enhanced

syntax and semantics of i* for modeling security constructs

requires revising the evaluation methods accordingly. For

example, employing countermeasures introduces direct

contributions of tasks and resources to malicious and non-

malicious tasks, vulnerabilities, and effects of vulnerabili-

ties. A security solution may partially prevent a malicious

task. For instance, increasing the buffer size can only

partially addresses buffer overflow unless the buffer size is

made infinite. This impact may cause the propagation of

partial satisfaction and denial values to hard elements such

as tasks and goals. In contrast, the algorithm in [32]

assumes that intentional elements contribute only to soft-

gaols. This implies that partial values are only assigned to

softgoals. In the current work, we relax this assumption by

considering partial values to be assigned also to goals,

tasks, and resources. Partial values associated with those

elements indicate that there is partial evidence of their

satisfaction or denial. Labels are also associated with vul-

nerabilities to represent the evidences that they are

exploited or not.

Figure 8 summarizes the security goal model evaluation

steps. The evaluation starts with assigning labels to the leaf

nodes of both malicious and non-malicious actors. In

2 The highlighted color in the models does not bear any semantic

significance and only intends to highlight the countermeasures in the

figures.
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particular, the labels associated with malicious elements

are defined based on the attackers’ profile. Then, the labels

are propagated to the upper nodes using propagation rules.

The final result of evaluation shows the consequences of

attacks and exploitation of vulnerabilities on higher goals.

If some stakeholders and system goals are denied because

of attacks, analysts need to consider countermeasures and

analyze their impact on the system behavior and security.

Evaluation labels are propagated through the goal model

again to verify the satisfaction or denial of the goals

because of the employment of countermeasures. In the

remainder of this section, we present the propagation rules

underlying the security goal evaluation method.

5.1 i* Propagation rules

This section briefly presents the propagation rules for i*

concepts (i.e., dependency, contribution, decomposition,

AND/OR, and means-end) based on the work in [32]. In a

dependency relation, satisfaction of the depender element

Fig. 7 The countermeasure view for the web server and browser example. (The elements with highlighted color are countermeasures)

Table 1 Attacker profile definition for attacker templates in Fig. 4

Malicious task Random hacker (1) Random hacker (2) Fake web site (1) Fake web site (2)

Send malicious script that returns back the cookies D D S S

Fake to be the actual website D D S D

Inject a malicious URL into the JavaScript S S D D

Inject a malicious URL into the JavaScript S S D D

Extract the cookies from malicious URL logs S D D D
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relies on the satisfaction of the dependee element. There-

fore, dependency links propagate the evaluation value of

the dependee element to the dependum and then to the

depender element. Differently from [32], we do not define

rules for dealing with ambiguous scenarios. Analysts

should avoid developing goal models that contains ambi-

guity such as the ones presented in the left side of Fig. 9.

Analysts shall revise the models in order to disambiguate

the model. The right side of Fig. 9 shows some examples

of unambiguous scenarios.

Contribution links represent the impact of intentional

elements only on softgoals. Table 2 presents the rules for

propagating the impact of an intentional element with

denial or satisfaction value on the target softgoal through

contribution links. We relax the restriction related to

contribution links in the i* syntax, so, a malicious or

countermeasure task can have contribution to hard ele-

ments as well. The rules in Table 2 are also valid for

contribution links to hard elements. However, the rules in

Table 2 are not enough for propagating the evaluation

values from multiple elements to a softgoal. Because one

element can make the softgoal satisfied, another element

may make the softgoal denied, which entails conflicting

evidences. In this work, we follow the approach suggested

in [32] where human judgment is required to resolve

conflicts.

AND/OR links refine a softgoal into one or more soft-

goals. When a softgoal is refined using AND links, the

minimum value among the sub softgoals is propagated to

the higher softgoal. When the softgoal is refined using OR

Fig. 8 Security goal model

evaluation steps

Fig. 9 Ambiguous dependency

links which analysts need to

avoid (Softgoald, Goald, and

Taskd are the dependum

elements)
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links, the maximum value among the sub softgoals is

propagated to the top softgoal. A decomposition link

refines a task into one or more intentional subelements. To

perform the higher task, all subelements need to be satis-

fied. Accordingly, the label that is propagated to the higher

task through the decomposition link is the minimum value

among the values associated with the sub elements. In

means-end relationships, the subtasks are alternative ways

to achieve the higher level goal; thus means-end links work

as OR relations, and the maximum value among alternative

tasks is propagated to the goal.

5.2 Vulnerability exploits and effects propagation rules

In order to propagate the satisfaction or denial labels of

malicious tasks to other elements, vulnerability is treated as

a filter: when the filter is open, a backdoor to the system is

open for attackers. To determine if the filter is open or not,

both the vulnerable element and the malicious task that

exploits the vulnerability need to be analyzed. If the vul-

nerable task is not executed, the vulnerability cannot be

exploited. Similarly, if the resource that brings the vul-

nerability to the system is not available, then the vulnera-

bility does not exist within the system. At the same time, a

vulnerability is exploited if the attack succeeds, indicating

that the malicious task has been performed. To determine

the exploitation condition of a vulnerability (i.e., if it has

been exploited or not), we introduce the function

exp : MT � TR �! Vf

where MT is the evaluation value associated with the

malicious task, TR is the value associated with the task or

resource that has brought the vulnerability, and Vf repre-

sents the exploitation condition of the vulnerability. The

evaluation value for Vf is calculated as Vf = min (MT, TR).

The satisfaction label (S) for the Vf means that the vul-

nerability is fully exploited, i.e., the filter is completely

open. The denial label (D) indicates that the vulnerability is

not exploited and the backdoor to the system is completely

closed. Partial labels for Vf indicate that there exist partial

evidences about the condition of the filter.

The effect of the vulnerability on other intentional ele-

ments is computed on the basis of the exploitation condi-

tion of the vulnerability and the severity of its effect on the

system. For instance, if a vulnerability has not been

exploited, its negative effect would not be propagated to

other elements. For this purpose, we employ the function

eff : Vf � I �! E

where Vf is the exploitation condition of the vulnerability,

I represents the severity of the vulnerability effect, and

E represents the evidences about the satisfaction or denial

of the intentional elements that is affected by the vulner-

ability. This function shares the same intuition of the

propagation rules described in Table 2. In the case, where

an attack exploits the combination of two or more vul-

nerabilities, human judgment is required to evaluate func-

tion eff for several combined vulnerability effects.

5.3 Countermeasure impacts propagation rules

Countermeasures can have three different security impacts:

they can be used to prevent execution of a task, achieve-

ment of a goal, or the availability of a resource; patching

vulnerabilities; or alleviating their effects. The propagation

of the impact of a countermeasure through a prevent link

depends on the successful employment of the counter-

measure as well as on its efficacy. To evaluate the final

impact of the countermeasure on the target element, we

introduce the function

pre : C � P �! EðnewÞ

where C is the evaluation label associated with counter-

measure, P is the type of the prevent relation, and E(new) is

the new evaluation value of the target intentional element

affected by the prevent. A prevent relation shares the same

nature with contribution relations, and accordingly, func-

tion pre uses the propagation rules defined in Table 2.

When a countermeasure patches a vulnerability, the

vulnerability exploitation condition is modified. The

objective of patching a vulnerability is to make the filter

closer and consequently to reduce the impact of the attack

that exploits the vulnerability:

patch : C � P �! VðnewÞ

where C is the countermeasure evaluation label, P is the

contribution type of the patch relation, and V(new) is the

new value to be associated to the vulnerability. Similarly,

to prevent relations, a patch relation shares the same

intuition with a contribution link, and the corresponding

propagation rules are similar to the ones defined in Table 2.

However, we assume that countermeasures only reduce the

risks and do not magnify vulnerabilities or attacks.

Therefore, propagation rules apply in cases where the

Table 2 Propagation rules for contribution links

Source label Contribution link type

Label name ?? ? -- - ?

Satisfied (S) S PS D PD ?

Partially satisfied (PS) PS PS PD PD ?

Conflict (C) C C C C ?

Unknown (?) ? ? ? ? ?

Partially denied (PD) PD PD PS PS ?

Denied (D) D PD PS PS ?
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countermeasure is partially or fully satisfied, and the

impact is not propagated if the countermeasure is partially

or fully denied. Once the impact of a countermeasure is

propagated through the patch link, the new exploitation

condition of the patched vulnerability needs to be propa-

gated to other instances of the vulnerability through

decomposition and dependency links.

Finally, a countermeasure may alleviate the effect of an

exploited vulnerability. In this case, the contribution value

of the alleviate link is combined with the countermeasure

evaluation value and the current effect of the vulnerability.

This can be represented by the function

all : C � A� EðoldÞ �! EðnewÞ

where C is the countermeasure evaluation label, A is the

contribution type of the alleviation relation, and E(old) and

E(new) are the contribution of the vulnerability effect before

and after applying the countermeasure, respectively.

Table 3 defines the rules used by function all to compute

the E(new) value.

5.4 Evaluation example

The first step of the evaluation is assignment of evaluation

labels to the leaf nodes of malicious and non-malicious

actors. Attacker profiles are used for the assignment of

evaluation labels to the leaf nodes of malicious actors.

Figure 10 shows the result of label propagation on a

fragment of Fig. 6. The steps of propagation are depicted

by the tag numbers assigned to the evaluation labels of

each element. After the initial label assignment, labels are

propagated to the upper nodes. For example, the Malicious

script vulnerability attached to Run the JavaScript with

user inputs task is fully exploited, because the vulnerable

and malicious tasks that exploit it are fully satisfied. The

exploitation condition of the vulnerability together with its

effect makes Protect users’ cookies, fully denied.

In Fig. 11, two alternative countermeasures, Disable

JavaScript and Anti Phishing tool bar, are added to the

system to analyze their impacts on the system security.

Assuming that the user Disables JavaScript option, the

evaluation process continues by propagating the impact of

this countermeasure to the Run the JavaScript with user

inputs task. As a result, the task that brings the vulnerability

is fully denied, and the impact of the vulnerability is not

propagated to Protect users’ cookies goal. On the other

hand, the Build customized page softgoal is partially denied.

6 Related work

Security requirements intend to protect the system against

threats and prevent the exploitation of vulnerabilities by

attackers. Security Requirements Engineering thus pro-

vides techniques for modeling and analyzing attacks,

attackers and vulnerabilities, and eliciting countermea-

sures. In this section, we overview the current state of the

art in threat analysis and security requirements engineering.

We compare the proposed approach with other existing

methods that analyze vulnerabilities for security require-

ments engineering.

6.1 Threat analysis

In security engineering, various modeling techniques have

been proposed to analyze the system from the perspective

of attackers [10, 22, 23, 33]. Schneier [10] proposes attack

tree as a formal and methodical way for analyzing attacks.

The root node of an attack tree is the goal of the attacker

that is refined using AND/OR relations to understand the

possible alternatives used by the attacker to achieve his

goal. Attack trees can be also annotated with properties of

attackers (e.g., skill, access, risk aversion, etc.) and labels

representing the cost or probability of achieving a goal.

Such properties allow designers to analyze the behavior of

classes of attackers by focusing on a certain parts of the

attack tree. Attack trees, however, are not linked to other

development artifacts, such as design, architecture, and

requirements specifications.

Fault Trees Analysis (FTA) [33] is one of the most

commonly used techniques in reliability engineering. The

main goal is to assess the likelihood of system failures

based on the likelihood of external events. Fault trees

visually model logical relationships among infrastructure

failures, human errors, and external events which could

lead to the system failure. Although FTA enables modeling

faults and tracing them to events or errors, it does not

provide means to express vulnerabilities of the system and

link attacks to them. Moreover, FTA does not support the

analysis of the impact of countermeasures on the system.

Table 3 Propagation rules for alleviate links

Countermeasure

label

Alleviate

contribution

Old

vulnerability

effect

New

vulnerability

effect

S - - -

PS -- -- -

S -- -- ? (No impact)

PS -- -- -

S - -- -

PS - -- -

S -- - ? (No impact)

PS -- - -
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McDermott [22] proposes to model attack nets as Petri

Nets, where places represent states or modes of the secu-

rity-relevant entities within the system, and transitions

represent input events, commands, or data that cause one or

more security-relevant entities to change state. Attack steps

are represented by places, transitions are used for the

explicit modeling of attacker actions, and tokens are used

to indicate the progress of the attack. However, Petri Net

models do not support the modeling and analysis of vul-

nerabilities and countermeasures. The attack model is not

Fig. 10 Propagation of the evaluation labels through the attacker template view

Fig. 11 Propagation of the evaluation labels through the countermeasure view
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linked to other development artifacts, which is an obstacle

to elicit security requirements and design the architecture.

Although it is possible to express attackers, their goals,

skills, and capabilities cannot be expressed.

Phillips et al. [23] introduced attack graphs to analyze

vulnerabilities in computer networks. Attack graphs pro-

vide a method for modeling attacks and relating them to the

machines in a network and to the attackers. The proposal is

based on attack templates, attack profiles, and network

configurations. Attack templates describe generic steps in

known attacks and conditions which must be hold. The

underlying idea is to match the network configuration,

attacker profile, and attack templates to generate the attack

graph. An attack graphs is an attack template instantiated

with particular attackers/users and machines. Thereby, one

can analyze an attack graph by identifying the attack paths

that are most likely to succeed. Although attack graphs are

able to model the steps of an attack, post and pre condi-

tions, required configurations, and capabilities, they do not

express the impact of the attacks on system functionalities.

The CORAS project [15, 16] proposes a modeling

framework for model-based risk assessment in the form of

a UML-profile. The profile defines UML stereotypes and

rules to express assets, risks targeting the assets, vulnera-

bilities, accidental and deliberate threats, and the security

solutions. In addition to the UML-profile, CORAS defines

a methodology based on the Unified Process for risk

assessment. The analysis method consists of analyzing the

target context by developing asset and threat models. The

potential attackers, who impose the risks, and vulnerabili-

ties that are exploited by attackers are identified. Risks are

prioritized with respect to their severity and likelihood, and

the treatments for those risks that are not acceptable are

identified. CORAS provides a way for expressing how

a vulnerability leads to another vulnerability and how a

vulnerability or combination of vulnerabilities lead to a

threat. CORAS also provides facilities to relate treatments

to threats and vulnerabilities. However, it does not inves-

tigate which design choices, requirements, or processes has

brought the vulnerabilities to the system.

Various security and attack patterns provide knowledge

repositories for analyzing and incorporating vulnerabilities,

attacks, and security countermeasures into system analysis.

For example, Hoglund and McGraw [34] list extensive

examples and ‘‘attack patterns’’ which help to understand

how attackers analyze software vulnerabilities and use the

results of the analysis to attack systems. Whittaker et al.

[35] present guidelines for software testers for uncovering

security holes caused by software dependencies, data-

dependent weaknesses in software, application design

flaws, and implementation-related vulnerabilities. Schum-

acher et al. [36] provide a general overview on security

patterns at the level of system and enterprise architecture.

However, these proposals address security using during the

design of the IT system and do not support the elicitation of

security requirements.

6.2 Security requirements engineering

In recent years, the necessity of considering security from

the early phases of the software development process has

been recognized. To address this need, traditional

requirements engineering framework has been adopted and

adapted to support the modeling and analysis of security

requirements. Van Lamswerde extended KAOS [37], a

goal-oriented requirements engineering methodology, by

introducing the notions of obstacle to capture exceptional

behaviors [38] and anti-goal to model intentional obstacles

set up by attackers to threaten security goals [12]. Anti-

goals are defined as the negation of application-specific

instances of generic security goals such as confidentiality,

availability, and privacy. Anti-goals represent the goals of

attackers. Anti-goals are then refined to form a threat tree

on the basis of attackers’ goals and capabilities as well as

software vulnerabilities. The leaf nodes are either software

vulnerabilities or anti-requirements (i.e., anti-goals that are

realizable by some attacker). Security requirements are

defined as the countermeasures to software vulnerabilities

or anti-requirements. The framework does not consider

assets as a main concept for eliciting and elaborating

security requirements. In addition, vulnerabilities are

identified as part of the anti model, while vulnerabilities

exist independently from the threats.

A number of approaches based on i*/Tropos [28, 39]

have been adopted to address different security aspects. Liu

et al. [8] use the i* framework to model the relationships

among strategic actors explicitly for eliciting, identifying,

and analyzing security requirements. In this approach, all

actors are assumed potential attackers, which inherit

capabilities, intentions, and social relationships of the

corresponding legitimate actor. The framework attempts to

identify the vulnerable points in the dependency network

when an actor behaves maliciously and to understand the

measures necessary to protect the system. Attacker iden-

tification, however, is limited to analyzing what roles in the

system can impose threats on the dependencies and ignores

external attackers. Moreover, the approach does not

explicitly describe how countermeasures need to be

incorporated into the model and what are their impacts on

attacks and other goals.

A different perspective has been adopted by Massacci

et al. [25] who define Secure Tropos for modeling and

analyzing authorization, trust, and privacy concerns.

Secure Tropos extends Tropos with concepts specific to

security, namely ownership, permission, delegation, and

trust. These constructs have be proved to be expressive
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enough to capture privacy-related legal requirements [27]

and have been used to define and validate security and

dependability patterns [40]. In [41], the authors shows how

Secure Tropos can be applied to design and analyze access

control policies. Secure Tropos, however, addresses secu-

rity issues within the organization setting rather than

dealing with malicious actors and system vulnerabilities.

Mouratidis and Giorgini [42] introduce extensions to the

Tropos methodology for incorporating security concerns

into the agent-oriented development process and modeling

security concerns throughout the whole development pro-

cess. In this approach, security features of the system-to-be,

the protection objectives of the system, the security

mechanisms, the threats to the system’s security features,

and security requirements as constraints are modeled.

However, similarly to [25], attackers and their malicious

goals and tasks, vulnerabilities, and vulnerability exploi-

tations are not modeled and analyzed.

Some proposals focus on integrating risk analysis into

the requirements engineering mainstream. Asnar et al. [43]

propose Goal-Risk (GR) Tropos, which extends Tropos

with three basic layers: strategy, event, and treatment. The

strategic layer analyzes strategic interests of the stake-

holders; the event layer analyzes uncertain events along

their impacts to the strategy layer; and treatment layer

analyzes treatments to be adopted in order to mitigate risks.

In [13], GR-Tropos has been extended to assess risk in

organizational settings. However, the framework mainly

concerns the development of safety critical system and

does not consider the intentionality of attackers.

Mayer et al. [44] analyze the impacts of risks on busi-

ness assets and elicit security requirements for risk miti-

gation. In this work, risks are related to threats and

vulnerabilities in the architecture. In a more recent work,

Mayer et al. [45] investigates the necessary concepts in

modeling language for the purpose of information system

security risk management. They propose a meta-model

based of five main concepts: risk, cause of the risk, impact,

threat, and vulnerability in this context. In [46], Mayer

et al. enrich the proposed meta-model by adding mea-

surement metrics to the meta-model.

Similar to our approach, threats are related to vulnera-

bilities, and their exploitation has some impacts. However,

in [44, 45], threats are not assigned to an actor and vul-

nerabilities are not attached to actions of the actors that

bring the vulnerability to the system; also the impact of

countermeasures on the vulnerabilities is not considered as

part of the meta-model.

Matulevicius et al. [14] improves the Secure Tropos

[42]3 modeling language for risk management purposes,

where risk is defined as the combination of a threat with

vulnerabilities leading to negative impacts on assets. Vul-

nerabilities are treated as beliefs inside the boundary of

attackers which may contribute positively to the successful

of an attack. However, similar to the CORAS framework

[15], the resulting model does not specify how the vul-

nerability is brought to the system, by what actions, and by

what actors. In addition, the enhanced Secure Tropos

models do not capture the impact of countermeasures on

the vulnerabilities and attacks.

Haley et al. [47] propose a security requirements

framework based on constructing the system context, rep-

resenting security requirements, and developing satisfac-

tion arguments for those requirements. The framework

extends problem frames and intends to determine adequate

security requirements for the system by considering threats

as crosscutting concerns. Functional requirements describe

how assets (i.e., objects to be protected) are used within the

system, and threats describe how attackers can compromise

the security of assets. Security requirements are thus

defined as constraints on functional requirements. Once

security requirements are elicited, satisfaction arguments

are used to verify that security requirements are satisfied by

the system as described by the context. This proposal,

however, mainly focuses on system requirements and does

not provide methodological support for the analysis of the

organizational context where the system will operate.

In the UML community, Sindre and Opdahl [11] pro-

pose analyzing security requirements by defining misuse

cases, inverted UML use cases, which describe functions

that the system should not allow. They are depicted as

black ovals to distinguish them from traditional use cases.

Misuse cases can be linked to use cases to indicate that the

use case is exploited by the misuse case, and use cases to

misuse cases to indicate that the use case is a counter-

measure against the misuse case. This new construct makes

it possible to represent actions that the system should

prevent together with those actions which it should support.

A similar proposal is defined by McDermott and Fox [48],

who introduce abuse cases to specify the interactions that

their results are harm to system. Differently form misuse

cases, abuse cases are distinguished from use cases by

representing them in separated models. This does not allow

one to analyze the impact of an abuse case on use cases.

The security requirements elicitation process underling

abuse and misuse cases does not consider why and how

security goals are defined without analyzing what may

threaten the assets.

Rostad [49] suggests extending the misuse case notation

for including vulnerabilities into requirements models.

Vulnerabilities are defined as a weakness that may be

exploited by misuse cases. Vulnerabilities are expressed as

a type of use case, with an exploit relationship from the

3 In security requirements literature, two different frameworks

developed by different researchers are called Secure Tropos [25, 42].
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misuse case to the vulnerability and an include relation with

the use case that introduces the vulnerability. However, the

semantics of the countermeasure impact is not well defined,

and the model cannot be used to evaluate the impact of

countermeasures on the overall security of the system.

Jürjens proposes UMLsec [7], a UML-profile designed

to express security-relevant information within UML dia-

grams. UMLsec objectives are to encapsulate knowledge

and make it available to developers in the form of a widely

used design notation, and to provide formal techniques for

the verification of security requirements. The profile is

described in terms of UML stereotypes, tags, and con-

straints that can be used in various UML diagrams such as

activity diagrams, statecharts, and sequence diagrams. The

stereotypes and tags encapsulate the knowledge of recur-

ring security requirements of distributed object-oriented

systems, such as secrecy, fair exchange, and secure com-

munication link. Assigning a stereotype and tag to the

model and defining potential threats make it possible to

analyze the behavior of subsystems in order to verify the

security impact of threats on the system. The defined

security requirements are high level and general. This

increases the reusability of the extensions in various con-

texts. On the other hand, the default threats may not hold in

every context. UMLsec has been used for model-based

security testing [50] as well as to analyze whether work-

flows and the design of the security permissions for the

system fit together [51]. However, UMLsec has its strength

during the system design phase, but it lacks the support for

the elicitation of security requirements during the early

phases of the development process.

6.3 Discussion and comparison

Table 4 compares capabilities of existing vulnerabilities

conceptual structures based on the conceptual foundation

discussed in Sect. 2. Few security modeling notations

provide explicit constructs for modeling vulnerabilities and

analyzing their impacts on security requirements. As

mentioned previously, CORAS framework models and

analyzes vulnerabilities by linking them to the threats and

risks. In [14], vulnerabilities are modeled as beliefs in the

attackers knowledge boundary which may contribute pos-

itively to the attacks. In [44, 45], i* is extended to represent

vulnerabilities and their relation with threats and other

elements of the i* goal model. Rostad [49] suggests

extending the misuse case notation for including vulnera-

bilities into requirements models. Vulnerabilities are

defined as a weakness that may be exploited by misuse

cases. Vulnerabilities are expressed as a type of use case,

with an exploit relationship from the misuse case to the

vulnerability and an include relation with the use case that

introduces the vulnerability.

The missing point in these approaches is providing

modeling constructs to understand why vulnerabilities are

within the system and how they are spread out among the

actors. To our knowledge, existing modeling notations do

not provide means to assign vulnerabilities to the actions

that actors perform or assets they use. The harmful effects

of vulnerabilities on stakeholders and system requirements

are not expressed by existing proposals. Among them,

CORAS [16] does not investigate which design choices,

requirements, or processes has brought the vulnerabilities

to the system, and semantics of relationships between

vulnerabilities, and between vulnerabilities and threats are

not defined. The semantics of the countermeasure impact in

[16, 49] is not well defined, and the model cannot be used

to evaluate the impact of countermeasures on the overall

security of the system. Similar to CORAS, the resulting

models in [14, 44, 45] do not specify how the vulnerability

is brought to the system, by what actions, and by what

actors. The proposals in [14, 44, 45] do not capture the

impact of countermeasures on the vulnerabilities and

attacks. In [44, 45], threats are not related to the attacker

that poses them, and the semantics of the relation between

threats and vulnerabilities are not defined. Finally, model-

ing and analyzing the steps and the order of actions to

accomplish an attack affect the countermeasure selection

and development, the existing conceptual modeling

frameworks for security requirements engineering do not

incorporate the concept of time into their meta-model.

7 Conclusions and future work

This paper proposes a requirements engineering framework

to support the elicitation of security requirements based on

the vulnerabilities that requirements and design decisions

bring to the system. The framework comprises a modeling

framework that extends i* with the concept of vulnerability

and relations that allow modeling and understanding

effects of vulnerabilities on security requirements. Security

requirements are expressed in the form of countermeasures

to be adopted to prevent attacks, patch vulnerabilities, or

alleviate their effect. Together with a modeling notation,

the framework provides an evaluation method for assessing

vulnerabilities risks and countermeasures efficacy.

This work is still in progress to better support system

designers in modeling and analysis of security require-

ments. Goal models and the i* modeling notation do not

capture temporal aspects of the systems. Therefore, the

resulting models do not provide a temporal sequence to

guide reading and understanding the model for the analysts

that view the large and complicated models. A major

limitation of the proposed approach concerns scalability

issues. Goal models contain multiple actors and
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dependency chains, and each actor includes several inten-

tional elements and complicated relationships. The result-

ing models, especially extended with security concepts, can

be complicated and hard to understand. This requires

development of modeling and analysis tools that provide

resolution management and handle the model complexity

by providing views of the security requirements model. To

manage the complexity of the models, one can filter vul-

nerabilities that are not exploited as well as their effects.

Analysts would benefit from views that focus on a specific

attack, vulnerability, or countermeasure of importance,

which cuts some other elements out of the model.

The proposed framework assumes that analysts have

knowledge about vulnerabilities, potential attacks, and

proper countermeasure or can obtain such information. In

particular, the analysis of vulnerabilities, such as propa-

gating them through the goal model or identifying their

impacts requires experience with vulnerable software

products and services. However, existing vulnerability

databases do not provide the required knowledge for linking

vulnerabilities to actions and assets of the system actors and

to potential attacks and countermeasures. Therefore, soft-

ware developers without security expertise may need

additional support for applying the proposed framework.

To address these issues, we are building catalogs of

attacker templates that defines the behavior of attackers and

catalogs of countermeasures that describe how security

flaws are addressed in current security practices. The

attacker catalogs assume limited skills and capabilities for

the attackers and analyze the actions that they can perform

for compromising the system in detail. The attacker tem-

plates are then instantiated using attacker profiles to study

the behavior of particular classes of attackers. We are also

developing security metrics based on the risk attitude of

system designers and stakeholders as well as on specific

application domains to assist designers during the decision

making process.

Finally, we are currently performing empirical studies

for evaluating the expressiveness of the proposed modeling

notation and the accuracy of the analysis method. Human

subjects are being asked to use the proposed framework for

modeling and analyzing a number of case studies. The

modelers are interviewed, and models are critically ana-

lyzed to draw conclusions about the practical usefulness

and expressiveness of the approach.
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